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INTRODUCTION 
 
Currently, mammography is the de facto technology for breast cancer screening. Although the 
technology is proven to be most sensitive among other comparable screening techniques,1 it is 
not without limitation. The specificity of mammography is still relatively low; only 15-30% of 
suspected breast lesions recommended for biopsy are actually malignant.2, 3 At the same time the 
false negative rate of mammography in dense breasts can be as high as 25%.4  
 
In mammography, a 3D volume of anatomical structures is collapsed into a 2D image plane. The 
resultant image, therefore, is a consequence of projection of overlapping anatomical structures 
into a complex 2D image. As a result, any abnormality in the form of breast cancer may easily 
get hidden behind projections of a normal tissue structures, resulting in low sensitivity. At the 
same time, the overlapping structures may also mimic the pathology that the radiologists are 
looking for, leading to high rate of false positives. An imaging technique which may alleviate the 
limiting factor of overlapping anatomical structures and at the same time take advantage of 
standard mammography imaging technique, may therefore prove to be highly effective in breast 
cancer screening. 
 
In this study, we are investigating the feasibility of a new imaging technique, namely, Multi-
plane Correlation Imaging (MCI) in which a plurality of digital radiographic images of the 
breast are acquired within a short interval of time from slightly different angles. These images 
are similar to projection images acquired in standard digital mammography, except that each of 
the angular projections is acquired with lower dose level than used in standard mammography. 
These images are then processed by a computer algorithm which utilizes spatial correlation 
information between different angular projections to identify and positively reinforce the lesion 
signals between different projections, thus minimizing the fundamental limiting factor imposed 
by anatomical noise on detection of lesions.  
 
For the first stage of this study, we investigated the optimum geometry of acquisitions in MCI in 
terms of the number of acquisitions and the angular span of those acquisitions that yield 
maximum performance in a clinical detection task.  A simulated mass was embedded in the 
multiple projections to emulate a realistic clinical task. An approach based on mathematical 
observer model was developed to assess the detectability of the mass. Detectability was 
measured in terms of Receiver Operating Characteristics (ROC). The methodology first 
combined cues on the detectability of mass available from multiple projections into a combined 
ROC as final figure of merit to measure the system's performance. Next, a specific combination 
of number of angular acquisitions and the angular span of these acquisitions was determined that 
maximized the Area under the combined ROC curve (AUC). The combination that maximizes 
the AUC was deemed the optimized geometry for MCI acquisitions. 
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BODY 
 
Specific Aim 1:        Determine the set of acquisition parameters for an MCI study. (Months 1-9) 
 

Task 1.1: Acquire multi-projection images of 10 cadaver breast specimens with and 
without lesions inserted at various settings of acquisition parameters. (Months 1-3) 

 
Progress: Work for this task is still in progress. The goal of this task was to acquire images that 
approximate mammographic backgrounds which could then be used for analysis in developing 
methodologies for the other specific aims of this study. However, due to an accelerated effort in 
acquiring patient data as a part of another NIH funded grant whose PI, Dr. Joseph Lo, is also co-
mentor in this study, we have now acquired multi-projection images from 200 human subjects.5 
This database was considered to be more robust and relevant to our specific aims and was 
therefore used for analysis in this study instead of images from cadaver specimens. 
Notwithstanding, we have already acquired 1 cadaver specimen.  As we learn more about the 
administrative procedure to acquire such specimens, this process is expected to accelerate. We 
hope to acquire the remaining number of cadaver specimens in near future. 
 
The first couple of months since the start of this grant were spent in securing an approval from 
the IRB office at Duke for retrospect use of the already acquired human subject data. The 
specific components of this study were determined to be in compliance with all applicable 
“HIPAA” regulations. Final IRB approval was received on 07/24/06. 
 
The human subject data employed in this study were acquired about the CC or MLO orientation 
from 25 different but fixed angular positions by a prototype clinical multi-projection system, 
Siemens’ Mammomat NovationDR.5 The database consisted of images of the left and right 
breasts of 82 subjects (out of 200 overall who were recruited).  492 regions-of-interest (ROIs) (2 
breasts x 82 patients x 3 ROIs/projection) of size 512 x 512 each were extracted from each of 
these images.   
 

Task 1.2: Develop Laguerre-Gauss Channelized Hotelling Observer incorporating 
the spatial correlation information available via MCI technique. (Months 1-6) 
 

Progress:  This task has been accomplished. The goal of this task was to develop an observer 
model which could be used to quantify the performance of MCI in detecting a simulated mass. 
Observers models have been used to predict human observer performance in clinically relevant 
visual tasks such as the detection of lesions in a complex background structure.6-8 
 
As a first step to meet the objectives of this task, a lesion was inserted in the multiple angular 
projections acquired in MCI. The lesion was simulated in 3D. To do so, first a 2D projection 
profile based on a previously published model of lung nodules was generated.9, 10 This profile 
has also been applied to mammographic applications.11 Starting from this profile, the surface of 
the central slice of the lesion was reconstructed using inverse radon transform, assuming that the 
lesion is isotropic and the different angular projections along the plane of the central slice would 
yield the same profile across the central slice. The central slice was then rotated about its 
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Fig. 2:  Example images of ROIs with simulated lesion embedded at the center. The ROIs were extracted from full-field MCI 
projections, following which, projections of 3D model of a 3 mm lesion were embedded at the center of each of these ROIs.  

diameter to complete the simulation of a 3D lesion. Next, projections of this 3D lesion were 
embedded onto the different ROIs to generate 492 signal-present ROIs for each of the 25 angular 
projections. The ratio of the contrast of the lesion to its diameter (set to 3 mm) was determined 
from published contrast/lesion thickness ratios based on the acquisition kVp, target/filteration 
combination, compressed breast thickness, and detector type.12 This ratio was further modified 
to take scattering into account. Towards that end, scatter to primary ratio were computed based 
on 75/25% glandular tissue/fat breast composition. The lesions were then added to the ROI in the 
log space such that the contrast of the lesion over the background was independent of the breast 
composition. Fig. 1 shows projection of the 3D lesion on the detector from three different tube 
angular orientations of +21.89o, 0o, and –22.94o relative to the CC orientation. Fig. 2 shows 
images of ROIs with the simulated lesion embedded at the center.  

 
 
 
 
 
 
 
 
 
 
 

Having inserted the masses into the different angular projections acquired in MCI, the next task 
was to develop an observer model that could predict the detectability of these masses over the 
complex mammographic backgrounds. Towards that end, a linear observer model called 
Channelized Hotelling Observer (CHO) was developed. The model uses functions which are a 
product of Laguerre polynomials and Gaussians. These functions extract essential linear features 
from the image thereby considerably reducing the dimensionality of the problem. Fig. 3 shows 
the first 9 of the 10 Laguerre-Gauss channels used in this study.  

(a) (b) (c) 

(c) (b)(a) 

Fig. 1: Example images of projections of 3D model of a 3 mm simulated lesion. These lesions were embedded on MCI 
projections to emulate the lesion-present mammographic background. (a), (b), and (c) show the projections with the tube 

orientation at +21.9o, 0o, and –22.9o, respectively, relative to the CC orientation.  
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Fig. 4: ROCs of 25 projections and the 
average of those with the final AUC = 

0.6417 

Fig. 3:  First 9 of the 10 Laguerre-Gauss channels used in to develop the observer model for task 1.2.  

Laguerre-Gauss Channelized Hotteling Observer (LG CHO) was used to generate a set of signal-
absent and signal-present decision variables for ROIs from each angular projection. Non-
parametric ROC curves were then derived by simple thresholding on the probability density 
function (pdf) of the decision variables. While testing using the LG CHO, signal in each of the 
ROIs was analyzed with the signal-known exactly (SKE) methodology, assuming that the lesion 
embedded on different ROIs within the same angular projection have approximately the same 
shape.  ROC for each of the 25 angular projections was obtained (Fig. 4). The area under the 
mean ROC curve (AUC) was subsequently determined using the trapezoidal rule. 
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Finally, 25 ROCs obtained from the 25 angular projections were fused into one final index of 
performance to indicate the overall system's performance in its ability to detect the embedded 
mass. Towards that end, three methods were used. For the first method, the 25 ROCs were 
simply averaged along the true positive fractions to yield the combined ROC associated with the 
detection of lesion in all the projections. In the second method, the signal-present and signal-
absent test statistics from different projections were averaged to determine the final test statistics. 
These values were then used to determine the combined ROC.  
 
For the third ROC fusion method, a modification of a recently published Bayesian decision 
fusion algorithm was used.12 In this case, first ROC for each angular projection in the training 
dataset was determined. The training dataset comprised of 429 ROIs for each angular projection. 
Next, for each of the 69 ROIs in the testing dataset, signal-present decision variable was 
calculated by determining the response of the image embedded with ith lesion to ith lesion 
template and the corresponding signal-absent response by determining the response of the image 
itself (without the lesion embedded) to the ith lesion template. Binary observer decision, βi, to the 
ith image was computed as  
 

1 0

1 0

1 0

( )

1

0 ,

i i
i

i i

i i
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λ λ
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i.e., the binary decision for an ith image was 1 if the signal-present decision variable,    , exceeded 
signal-absent decision variable,    , but 0 otherwise. From the above equations it is clear that the 
threshold for correct observer outcome of an ith image is   . The corresponding values of 
probability of true positive, dp , and of false positives, fp , were determined from the ROCs of 
the 25 angular projections in the training dataset. Assuming that the binary decisions were 
statistically independent, the PDFs of the fused decision variables for signal-present and null 
hypothesis were then obtained as    
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where, q is an index for angular projection. Having found the signal-present and signal-absent 
decision variables, the probability density functions of each were computed and ROC 
determined. 

 
ROC curves and the corresponding AUCs obtained from the three techniques are shown in Fig. 
5. While AUC obtained from a single CC projection was 0.652, AUC obtained from an average 
of ROCs obtained from 25 projections was 0.642. Simple averaging of test statistics yielded an 
AUC of 0.815.  An AUC of 0.946 was obtained from the Bayesian decision fusion technique.  

(2) 

(1) 

1
iλ

0
iλ

0
iλ
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The work on this task was started well in advance in anticipation of its application in two of the 
remaining aims. It resulted in the following publication in the proceedings of SPIE's conference 
on Medical Imaging in 2006: 
 
A. S. Chawla, R. Saunders, C. Abbey, D. Delong and E. Samei, "Analyzing the effect of dose 
reduction on the detection of mammographic lesions using mathematical observer models," Proc. 
SPIE 6146, 61460I-61461 - 61460I-61412 (2006).  
 

Task 1.3: Apply the observer model on the image dataset to determine the optimum 
set of acquisition parameters, namely, maximum number of oblique views required, the 
specific angulations at which they should be acquired and the optimum dose level at 
which each of those should be acquired. (Months 7-9) 

 
Progress: This task has been accomplished. The ROC fusion methodologies were applied to 
evaluate the effect of changing original acquisition parameters of MCI. This was evaluated at 25 
different dose levels whose magnitudes were less than that used for actual clinical acquisitions. 
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Fig. 5: ROCs of 25 projections and the average of those with the final AUC = 0.6417. Also shown are the ROCs 
obtained from the three other fusion techniques. The angular span of the projections was 44.8o. 
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These reduced dose levels were simulated by adding radiographic noise to each of the ROIs to 
create images with a noise appearance similar to that caused by reduction in clinical radiation 
dose. Noise equivalent of a particular dose level was determined using a novel algorithm, which 
has been reported earlier in detail.13 The two acquisition parameters evaluated were the angular 
range of projections and the number of angular projections within each angular range. 
 
Fig. 6 shows variation of AUC for different number of angular projections spanning a total 
angular arc in the 3.6-44.8o range using the Bayesian decision fusion technique. The dose level of 
each acquisition is equal to 1/25th of standard mammographic screening dose level leading to 
increased dose level with increasing number of angular projections considered. At each angular 
range, the AUC increases with the increase in number of angular projections indicating the 
potential improvement in detection due to the MCI technique. The change in AUC at each 
angular range is, however, minimal after approximately 10 projections. Noteworthy, is the fact 
that an angular span of 11.4o yields the highest AUC when fusing only two projections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
A second dose configuration was evaluated in which the total dose level is linearly divided 
among the different projections and hence the total dose delivered to the patient does not increase 
with an increase in the number of projections considered for decision fusion. Fig. 7 shows 
variation of AUC under these conditions using the Bayesian decision fusion technique. In this 
case, for all angular spans, the AUC first increases and then decreases as the number of 
projections is increased.  

   Fig. 6: Variation of AUC for different number of angular projections spanning a total angular arc in the 3.6-44.8o range using 
the Bayesian decision fusion technique. The dose level of each acquisition is equal to 1/25th of standard mammographic 
 screening dose-level leading to increased dose level with increasing number of angular projections considered to reach  

a maximum of conventional dual-view screening dose at  25 projections. 
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Both the dose configurations show that the highest AUC is obtained by combining information 
from just two projections with an angular span of 11.4o.  

     
To summarize our findings, we found that the detectability of lesion in MCI is dependent on the 
number of projections used, the total angular span of those projections and their acquisition dose 
level. An optimization technique to quantify the effects of changing acquisition parameters was 
established. It was found that if the total dose level is held constant at 1/25th of the standard dual-
view mammographic screening dose, the highest detectability performance is observed when 
considering only two projections spread along an angular arc of span 11.4o. Future work will 
confirm this optimization at higher dose levels. The methodology presented here for optimizing 
acquisition parameter are generic in nature and, therefore, can be easily adopted for optimizing 
the acquisition parameters for other breast imaging methods, such as Digital Breast 
Tomosynthesis, where the final figure of merit is contingent on decisions made on a plurality of 
image slices. 

 
 
 
 
 
Work for this specific task resulted in the following publication in the proceedings of SPIE's 
conference on Medical Imaging in 2007: 
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   Fig. 7: Variation of AUC under iso-study dose conditions using the Bayesian decision fusion technique. The total dose level, 
 equal to 1/25th of standard dual-view mammographic screening dose level, is linearly divided amongst the different 

 projections and hence the total dose delivered remains constant at this dose level. 
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A. S. Chawla, E. Samei, and C. Abbey, “A mathematical model approach toward combining 
information from multiple image projections of the same patient,” Proc. SPIE 65101,K1-11, 
(2007) 
 
Specific Aim 2: Extend single-view CAD processing methods used for conventional 
mammography for MCI implementation using a multi-plane correlation rule. (Months 10-21) 
 
Progress: We have initiated the task of extending an existing single-view and a recently 
published dual-view CAD algorithm for the purpose of MCI.14 Since the work is in its 
preliminary stage, we will defer a report on this task to a subsequent annual summary.  
 

 
KEY RESEARCH ACCOMPLISHMENTS 

 
z An observer model approach was developed to quantify the effect of changing acquisition 

parameters on diagnostic image quality of radiographic images. 
z Multi-plane correlation imaging (MCI) was demonstrated to improve sensitivity over 

standard mammography. 
z Optimum geometry of MCI acquisitions that maximizes image quality in terms of 

detectability of a simulated mass was investigated.  
z The methodologies developed in this phase of the project will be key to meeting the goals 

of the remaining specific aims of this study. 
 

 
REPORTABLE OUTCOMES 

 
The following manuscripts are attached as appendices 1 and 2 with the same numbers. The 
names of the fellow (Chawla) and mentor (Samei) are boldfaced for emphasis. 
 
1. A. S. Chawla, R. Saunders, C. Abbey, D. Delong and E. Samei, "Analyzing the effect of 
dose reduction on the detection of mammographic lesions using mathematical observer models," 
Proc. SPIE 6146, 61460I-61461 - 61460I-61412 (2006).  
2. A. S. Chawla, E. Samei, and C. Abbey, “A mathematical model approach toward 
combining information from multiple image projections of the same patient,” Proc. SPIE 
65101,K1-11, (2007) 
 
 

CONCLUSIONS 
 
We have demonstrated feasibility of Multi-plane correlation imaging (MCI) as a technique for 
breast cancer screening. Detectability of a simulated mass increased with increase in the number 
of angular projections, even as the total dose delivered to the patient remained constant.  The 
technique demonstrated superior diagnostic performance when considering only two projections 
spread along an angular arc of span 11.4o. Future work with cadaver specimens will substantiate 
the results of the present findings. 
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ABSTRACT 

 
The purpose of this study was to determine the effect of dose reduction on the detectability of breast lesions in 

mammograms. Mammograms with dose levels corresponding to 50% and 25% of the original clinically-relevant 
exposure levels were simulated. Detection of masses and microcalcifications embedded in these mammograms was 
analyzed by four mathematical observer models, namely, the Hotelling Observer, Non-prewhitening Matched Filter 
with Eye Filter (NPWE), and Laguerre-Gauss and Gabor Channelized Hotelling Observers. Performance was 
measured in terms of ROC curves and Area under ROC Curves (AUC) under Signal Known Exactly but Variable 
Tasks (SKEV) paradigm. Gabor Channelized Hotelling Observer predicted deterioration in detectability of benign 
masses. The other algorithmic observers, however, did not indicate statistically significant differences in the 
detectability of masses and microcalcifications with reduction in dose. Detection of microcalcifications was affected 
more than the detection of masses. Overall, the results indicate that there is a potential for reduction of radiation 
dose level in mammographic screening procedures without severely compromising the detectability of lesions.  

 
Keywords: Dose, Simulation, Mammography, Non-prewhitening Matched filter with Eye filter, Laguerre-Gauss, 
Gabor, Hotelling Observer, AUC, ROC, SKEV.  

 
 

INTRODUCTION 
 

Early detection of breast cancer is largely contingent on the image quality of mammograms. There are many 
aspects of image quality. Among factors like the physical properties of the detector, the beam quality and others, the 
image quality of mammograms also depends on the amount of x-ray exposure to the detector and hence the amount 
of dose delivered to the patient. However, there is no strict protocol for the dose level. The recommendations of the 
National Council on Radiation Protection and Measurements (NCRP) are for the mean glandular doses (MGD) to be 
lower than 2 mGy for images acquired with anti-scattering grids and lower than 4 mGy without anti-scattering grids 
(1). A survey of patients undergoing mammography found MGD in the 0.3–12 mGy range (2).  

 
An increase in dose delivered to the breast improves image quality parameters like sharpness, noise and 

contrast. At the same time, the dose level has to be kept below a certain threshold to minimize radio-toxicity of 
mammographic screening exams. This is particularly important since approximately 99.5% of the screened 
population are retrospectively found to have no breast cancer, and only 15−30% of suspected breast lesions 
recommended for biopsy are actually malignant (3, 4).  A recent report by National Academy of Sciences (NAS) (5) 
concludes that there are evidences that even the smallest dose of low-level ionizing radiation causes increased health 
risks to humans. It is therefore important that to minimize these risks, the patient dose in x-ray mammography be 
kept as low as possible while also ensuring that the image quality required for a given detection task is not 
compromised.  

 



An important factor why dose can be potentially reduced in mammography is the fact that detectability of 
lesions is often confounded by overlapping anatomical structures – a characteristic inherent to any projection 
imaging technique.  This limitation of mammograms in rendering masses and microcalcifications hidden in dense 
fibroglandular tissue is not governed by the amount of x-ray exposure and hence the dose level delivered to the 
breast. In fact it has been suggested that anatomical noise could be the biggest factor limiting the detection of breast 
cancer, both by radiologists and by computer assisted diagnosis (CAD) systems (6, 7). This indicates that the dose in 
mammography could be lowered without profound effect on the detectability of lesions. 

 
Research on optimizing the benefit to radiation risk ratio of digital mammographic screening procedures is 

active (8). Berns (9) et al. showed that dose values could be lower for digital systems than those for screen-film 
systems.  A recent study by Gennaro et al. (10) on breast phantoms concluded that this dose reduction factor could 
be as much as 50% while still preserving image quality above screen/film standards.  

 
In this work, the impact of reduced dose on the detection of breast lesions was studied using mathematical 

observer models. The detectability of simulated masses and microcalcifications at reduced dose levels was analyzed 
and compared with the performance on mammograms acquired with clinical dose levels. To quantify the 
detectability performance, four mathematical observers were implemented. The results were characterized in terms 
of ROC and the area under the ROC curve (AUC) to compare detectability at different dose levels.  

 
 

MATERIALS AND METHODS 
 

The study was conducted in multiple steps. First, breast lesions were simulated and embedded on normal 
mammographic backgrounds acquired at clinical dose levels. Secondly, simulated dose-equivalent noise were added 
onto these images to emulate images acquired at lower dose levels. Next, four mathematical observer models were 
implemented. These were the Non Pre-whitening observer with Eye filter (NPWE), Hotelling observer and two 
Channelized Hotelling Observer (CHO), namely Gabor and Laguerre-Gauss channelized Hotelling observers. Image 
quality was measured in terms of Signal-to-Noise Ratio (SNR) in the case of NPWE and Hotelling Observers, and 
Receiver Operating Characteristic (ROC) curves and Area-Under-ROC Curve (AUC) in the case of CHOs. To 
simulate real-clinic like situations, a signal-known-exactly-but-variable (SKEV) paradigm was used and the 
background was known statistically. Finally, an analysis was performed to test the statistical significance of 
differences observed in AUCs obtained at the different dose-levels. The following describe these steps in detail. 
 

A. Image Database 
 

Mammographic images used in this study were clinically-acquired at 25-30 kVp range with molybdenum anode 
using a clinical flat-panel cesium iodide-based digital mammography system (Senographe 2000D, GE Medical 
Systems, Milwaukee, WI). A total of 300 normal craniocaudal view mammograms were used. This included the 
signal (lesion)-absent set of backgrounds which were used for training the observer models. Another set of signal-
present images were generated by digitally inserting realistic simulated masses and microcalcifications in signal-
absent backgrounds by a routine previously published (11, 12). This routine relied on the measured characteristics of 
real lesions to create simulated lesions with a realistic appearance.  Two types of breast masses, namely benign and 
malignant, and two types of microcalcifications, namely pleomorphic and fine linear branching (flb), were simulated 

fine linear 
branching 

malignant pleomorphic 

Fig. 1: Example of simulated lesions which were embedded on real mammographic backgrounds to emulate
the signal-present hypothesis. Images in the left column show benign and malignant masses. Images in the 

right column show fine linear branching and pleomorphic malignant microcalcifications. 

benign 



with sizes in the 4-8 mm range. Fifty different realizations were formed for each lesion. Fig. 1 shows the three types 
of lesions simulated. Following the insertion of the lesions, a noise modification routine was used to add 
radiographic noise to clinically-acquired mammograms to create images with a noise appearance similar to that 
caused by a reduction in radiation dose. Noise equivalent of a particular dose level was determined using a novel 
algorithm, which has been reported earlier in detail (13). The routine accounted for the quantum noise variance, the 
detector transfer properties, the scattered radiation and for the impact of attenuation due to breast structures on noise. 
By changing the noise magnitude, dose reduction corresponding to half (50%) and quarter (25%) of the original 
clinical exposure levels were simulated. Image post-processing techniques typical of clinical mammograms were 
applied to the images. To determine the appropriate window and level parameters for each mammogram, an 
experienced mammographer windowed and leveled each image individually. The resultant images looked identical 
to those that are viewed by radiologists in the clinic. Fig. 2(a) shows an ROI of a typical mammogram with a 
malignant mass located at the center of the image. Figs 2(b) & 2(c) show the same mammogram with added 
simulated noise corresponding to half and quarter the full-dose level respectively. At each dose-level, breast lesions 
were placed at the center of 50 mammographic backgrounds creating a total of 50 signal-present images for each 
type of lesion. To simulate real clinical situations, the backgrounds corresponding to these 50 signal-present images 
were different from the backgrounds without signal. Thus out of 300 mammographic backgrounds available in the 
database only 250 normal mammograms were used to test the signal-absent hypothesis.  

 
 
 
 
 
 
 
 
 

B. Algorithmic Observer Models 
 

Algorithmic observer models have been used to predict human observer performance in clinically relevant 
visual tasks such as the detection of lesions in a complex background structure. It has been shown earlier that linear 
observers models like non-prewhitening matched filter, Hotelling and Gabor channelized Hotelling observers are 
good predictors of human visual performance under various tasks over real anatomic backgrounds (14-17). In this 
section a brief overview of various observer models used in this work will be presented. 

 
i) Hotelling SNR: 
 

If the anatomical background is assumed to be statistically stationary and the system is linear-shift invariant, it 
is possible to determine Hotelling Observer SNR in the Fourier domain. Since the Hotelling observer is a pre-
whitening linear observer, its SNR can be calculated as (18, 19): 

 
 
 
 

(a) Full Dose (b) Half Dose (c) Quarter Dose 

Fig. 2: Example ROIs of signal-present mammograms with a malignant lesion present at the center of it. (a) 
shows an ROI of a mammogram acquired with clinical dose level. (b) and (c) show the same ROI with noise 

corresponding to half and quarter of the full-dose level respectively added to the ROI in (a) 
 

2 2
2

0

| ( ) | | ( ) |2 ,
( )

Nf

Hot
S f H fSNR fdf

W f
π= ∫ (1) 



where, f is the radial frequency, Nf  is the Nyquist frequency of the detector, ( )H f is the modulation transfer 

function of the system, ( )S f is the Fourier transform of the contrast profile of the nodule to be detected and ( )W f is 
the noise power spectrum of a mammogram with the nodule present. 
 
ii) Nonprewhitening Matched Filter with Eye (NPWE) SNR 
 

Nonprewhitening matched filter (NPW) is a simple template-matching observer which uses expected signal as a 
cross-correlation template. NPW differs from Hotelling observer in that it does not compensate for statistical 
variation in the background and hence cannot be used on statistically non-stationary backgrounds. The model 
reduces to the ideal observer for SKE/BKE tasks in white noise (16).  NPW can be extended to incorporate the effect 
of human vision in detection tasks. This is done by filtering the template with the contrast sensitivity function of the 
human visual system. This model is called NPWE, where the added “E” stands for “eye filter”. The SNR of NPWE 
can then be determined, just like Hotelling SNR under similar assumptions of the stationarity of the noise and linear-
shift invariance of the system. The SNR is given by, 
 
 
 
 

 
 
 

 
where ( )V f is the transfer function of visual-response and the other variables are as defined earlier. ( )V f is 
approximated as: 
 
 
where c is a scale factor to yield maximum visual response at 4 cycles/deg, f is linear frequency in cycles/mm. 
Consequently for a normal viewing distance of 50 cm, c = 3.21585 mm2. Note that the visual response affects both 
the signal and the noise on the image as perceived by the observer. 

 
 

Channelized Hotelling Observer (CHO) 
 

 Hotelling Observer is a linear observer. It uses a linear function of the pixels of an image and takes correlation 
in the image background into account to compute its test statistics. Since Hotelling observer takes into account 
knowledge of randomness in the background, it is a pre-whitening matched filter, however, with an important 
distinction that it is applicable on non-stationary backgrounds. In a SKE/BKE case, Hotelling observer would reduce 
to ideal linear observer. Hotelling observer requires an estimate of the sample variance-covariance matrix from the 
original images to incorporate statistical fluctuations in the image. To estimate the variance-covariance matrix from 
the limited number of mammograms clinically available, it is necessary to reduce the size of the sample covariance 
matrix. To this end, functions called linear feature could be used to extract essential features from the image. Much 
like in Principal Component Analysis, images are represented as weighted sum of few smooth orthonormal 
functions centered at the signal location thereby considerably reducing the dimensions of the covariance matrix. In 
this study, two such functions, namely the Laguerre-Gauss and Gabor Functions were used to reduce the problem of 
dimensionality. In this section, first the concept of channelized linear observer will be revisited followed by a 
description of the two functions and their implementation. The readers are referred to some of the excellent 
references on this subject for further details (14, 16, 18, 20, 21).  
 

A linear observer computes decision variables by computing correlation between the signal template and the 
images. Towards this end, first responses of the images to each of the transformation channel are computed. The 
channel responses are calculated as the dot-product between the channels vector and the signal (lesion)-present 
image vector, signal (lesion)-absent image vector (also referred to as background vector) and signal (lesion)-only 
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image vector. Response to ith lesion has been denoted here as i
sR . i

g1R  is the response of an ith mammographic 

background with ith lesion embedded in it, i.e. the ith signal-present image. j
g0R  is the response of jth signal-absent 

background. The signal template or the channel weights corresponding to each ith lesion is determined as  
 
 
 
where cK  is the covariance matrix of the mammograms. The above equation gives Hotelling observer its 
prewhitening properties. The covariance matrix was determined from signal absent images since the inserted lesions 
were of low contrast and did not affect the covariance matrix.  
 

Finally, the decision variables for signal-present hypothesis and null hypothesis were computed as the dot-
product of signal-template and channel response of the signal-present and signal-absent mammograms, respectively. 
For each ith signal-present image, decision variable corresponding to signal-present hypothesis was computed as dot-
product of that image with the ith lesion template, whereas decision variables for signal-absent hypothesis were 
calculated as dot-products of signal-absent backgrounds with the ith lesion template. Thus for each ith lesion, a single 
decision variable corresponding to signal-present hypothesis was computed, whereas 250 decision variables were 
computed for the 250 signal-absent backgrounds available in the database. This was repeated for all the 50 lesion 
templates available in the databases. These decision variables, also called likelihood ratios or the expected response 
of the model to images, are given by 

 
                                                            1   ( )i i t i

c g1w Rλ =   for ith lesion present image,  

                                                       0   ( )  ij i t j
c g0w Rλ =  for jth lesion-absent background, 

 
where i varies between 1 and 50, and j varies from 1 to 250. This methodology is in line with the SKEV paradigm in 
which each of the 50 signal-present image had a different but known lesion present. 50 ROC curves were, therefore, 
obtained for each of the 50 lesions using this procedure. These curves were non-parametric in nature and were 
derived by simple thresholding on the probability density function (pdf) of the decision variables. These 50 ROC 
curves were then averaged along their true-positive fractions to generate a final ROC. Area Under Curve (AUC) to 
analyze the performance of the model was determined using the trapezoidal rule. 
 
iii) Laguerre-Gauss Channelized Hotelling Observer 
 

LG CHO is a linear observer model which is similar to a Hotelling observer but is computationally simpler. The 
Laguerre-Gauss channels are smooth function which are a product of 
Laguerre polynomials and Gaussians. The functions use a distance 
scale related to the signal radius. This value which defines the 
variance of the Gaussian, is iteratively adjusted to maximize the 
area under the ROC curves. A value of 8 was found to maximize 
AUC in the present study. A total of 10-channels were used 
(generally 6 channels are sufficient for characterizing isotropic 
signals (20).  As shown in Fig. 1, the signals (simulated lesions) 
used in our study were isotropic within certain degrees of 
approximation, although clustered microcalcifications did not fall 
into this category.  
 
iv) Gabor Channels: 

 
Although Laguerre-Gauss channels are easy to 

implement, they do not mimic the contrast sensitivity of the 

i -1 i
c c sw = (K ) R

(5) 

(4) 

Fig. 3: Comparison of frequency response of Gabor 
channels with contrast sensitivity of the human eye.  

Octave Bandwidth of Gabor channels was 1, centered at 
frequencies [0.5,1,2,4,16,32] cpd, each oriented at 0°. 



Fig. 4: Illustration of computed SNRs computed with NPWE and Hotelling observers. The standard deviation in the 
measurement of SNRs are also plotted. Full-dose denotes the clinical dose level used in standard mammographic screening.
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human eye. Fig. 3 shows this behavior of Gabor channels. It is clear from the figure that Gabor channels sample the 
contrast sensitivity of human eye in the frequency domain. The figure also illustrates the band-pass characteristics of 
the Gabor channels. An octave bandwidth of 1 was used in this study. Psychophysical studies in the past have 
confirmed that an octave bandwidth of 1 is a reasonably good estimate of human visual system when it is tuned to a 
particular frequency (22). Central frequencies chosen were 0.5, 1, 2, 4, 8, 16, 32 cycles/degree with orientations at 
0o, 45 o, 90 o, and 135 o. These with the odd and even phases add to a total of 56 channels.  

 
C.  Evaluation of Statistical Significance 
 
An analysis was conducted to test the statistical significance of differences in AUCs obtained for detection at 

different dose levels. This was performed as follows: at each dose-level, 500 bootstrap samples of signal-present 
images were paired with 500 bootstrap samples of backgrounds. For example, the first set of 50 signal-present 
images obtained from the first of 500 bootstrap samples of signal-present images was paired with the first set of 250 
signal-absent backgrounds obtained from the first of 500 bootstrap samples of the backgrounds. For this set of 50 
signal-present and 250 signal-absent images, one ROC curve was determined by the method described in sub-
section (iii). This procedure was repeated for all the paired (k, k), k e 1Ω500, numbered bootstrap sample obtaining 
a set of 500 ROCs. From each of these curves, an AUC was computed.  Thus a set of 500 AUCs was obtained for 
each dose-level. The AUCs were then subtracted in pair and the mean of differences and the standard deviation of 
the differences were computed as an approximation to the standard error of the difference of the means of the AUCs. 
If the ratio of the mean of differences and the standard error of differences was more than 2, the differences seen in 
AUCs at different dose levels were noted as being statistically significant. 

 
 

RESULTS 
 

 Fig. 4 shows the Hotelling observer and NPWE SNRs. Values of Hotelling observer SNR (± std) for benign 
and malignant masses at the three dose levels were in the 14.30−10.15 (± 4.5−2.9) and 5.21−5.08 (± 1.60−1.53) 
ranges, respectively. For fine linear branching and pleomorphic  microcalcifications, these values were in the 
25.13−17.11 (±8.5−5.7) and 25.97−5.08 (± 15.6−10.6) ranges, respectively.  

Fig. 5 and Fig. 6 show ROC curves obtained from Gabor and Laguerre-Gauss channelized Hotelling observers 
(CHOs), respectively. For each type of breast lesion under consideration ROC curves obtained from LG CHO under 
different dose level conditions overlap. ROC curves obtained from Gabor CHO for the detection of malignant 
masses and microcalcifications under the three dose level conditions also overlap. For the detection of benign 
masses with Gabor CHO, however, ROC curve for the full-dose level is higher at the low false-positive portion of 
the ROC curves compared to those obtained at 50% or 25% of the full dose level. Similar trends are observed in the 
values for Area Under ROC Curves (AUC). These values with their associated standard errors are plotted in Fig. 7. 
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The AUC (± std) for the three dose levels obtained from Gabor CHO for benign and malignant masses are in the 
0.975−0.996 (± 0.005) and 0.997−0.998 (± 0.001) ranges, respectively. For fine linear branching and pleomorphic 
microcalcifications, these values are in the 0.673−0.741 (± 0.02) and 0.721−0.761 (± 0.02) ranges, respectively. The 
AUC (± std) obtained from Laguerre-Gauss CHO for benign and malignant masses are in the 0.988−0.996 (± 0.003) 
and 0.990−0.994 (± 0.002) range respectively. For fine linear branching and pleomorphic  microcalcifications these 
values are in the 0.817−0.840 (± 0.02) and 0.723−0.784  (± 0.02) range respectively. The mean of differences (± 
standard error) in AUCs obtained at the three dose levels are plotted in Fig. 8. Except in the case of detection of 
benign lesions with Gabor CHO, a paired t-test evaluation on detectability of lesions at different dose levels with the 
two CHOs showed that the differences in AUCs, as the dose is reduced to 50% or 25 %, were not statistically 
significant (the t-values were < 2).   
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Fig. 5: ROC curves obtained with 56 Gabor Channelized Hotelling Observer 
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Fig. 6: ROC curves with Laguerre-Gauss Channelized Hotelling Observer 
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Fig. 7: Illustration of computed Area Under ROC Curves (AUC) and the associated standard errors. 
AUCs are used to quantify detection performance on mammograms acquired at three different dose 
levels. They were obtained from the two chanellized Hotelling observers, namely Laguerre-Gauss 
and Gabor. Full-dose denotes the clinical dose level used in standard mammographic screening. 
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Fig. 8: Paired t-test analysis: Difference of mean AUCs obtained by bootstrap sampling of decision variables at 
different dose levels. The associated standard errors are also plotted. 



DISCUSSION 
 

In this study, we approximated a clinically relevant signal known statistically paradigm (23, 24) by using the 
recently introduced signal known exactly but variable (SKEV) framework. Under SKEV paradigm, a clinically 
relevant situation is approximated by changing the shape and size of signal from one image to another and the 
observer knows which signal will be present on the image before testing the image. In contrast, majority of previous 
studies done with observer models have used a signal-known-exactly (SKE) detection task where the same lesion 
whose shape and size are know a priori is embedded on set of different backgrounds which are either computer 
generated (25, 26) or real (16, 27). SKEV task has been used earlier on real anatomical backgrounds like angiograms 
(17) but as the final figure of merit only the detectability indices have been computed without a complete ROC 
analysis. In this work, we computed ROC curves as well as the Area under ROC Curve (AUC). The image 
backgrounds had real mammographic anatomical structures and hence were known only statistically.  

 
Gabor CHO and LG CHO algorithmic observers suggested that a reduction in dose-level from the level 

currently used in mammographic screening procedures in clinics may not influence detection probability of most 
lesions on mammograms, although a statistical difference in performance of Gabor CHO was observed in the 
detection of benign lesions at different dose levels. There were no statistical differences in performance of the 
observer models as the dose was reduced to 50 % and or even 25%. However, there is an indication that the 
performance at 25% dose level may deteriorate more than when the dose is reduced by 50%. Mean difference in 
detectability increases when the dose is reduced from full to half level than when the dose is reduced from half to 
quarter level. These observations were also supported by NPWE and Hotelling observers. The SNR values decrease 
as dose is reduced from full dose to 50% and to 25% but the differences in the SNRs are within the standard error in 
measurement suggesting no strong evidence of any degradation in the performance with reduction of dose level.  
However, these observers have a clear drawback in that they assume statistical stationarity of the background. 
Reduction of dose may affect detection of microcalicifications more than masses, as indicated by higher mean 
difference in AUCs for microcalcifications than for masses. A previous study (28) also reported that dose reduction 
in digital mammography resulted in loss of microcalcification detectability due to an increase in noise. Furthermore, 
in contrast to the recent trends in increasing radiation dose in screen/film mammography (29), results in this study 
suggest that any further increase in dose-level than the clinical levels currently used, may not improve the 
detectability of mammographic lesions. 

 
Despite the conclusions of this investigation, certain limitations should be acknowledged. One limitation of this 

research was the low number of images used for testing the performance of the mathematical observer models. At 
the same time the results do conform with the findings of another research group on phantoms (10) which concluded 
that a dose reduction by as much as 50% of the currently practiced clinical dose levels may not compromise clinical 
decisions. Furthermore, although the observer models have been shown to correlate well with human detection 
performance on real anatomical backgrounds, like mammograms, an exhaustive study has not yet been carried out to 
conclusively establish the correlation. It is therefore important that the significant potential of dose reduction found 
in this study should be implemented only after being confirmed clinically. Moreover, an important issue of the effect 
of reduced dose on discrimination between benign and malignant masses has not been addressed here.  

 
 

CONCLUSIONS 
 

In summary, patient dose in mammographic screening should be optimized for a balance between the radiation 
risk factor and the image quality required for detection task. This optimization should be based on clinical decision 
(that is the final outcome of the radiological process), rather than on absolute measures of image quality. All the 
algorithmic observer models used in this work show that reduction in dose-levels does affect detectability of masses 
and microcalcifications, although the differences are not statistically significant. This indicates that there is a 
potential for reduction of dose level in mammographic screening procedures without severely compromising the 
detectability of lesions. Dose reduction may, however, affect detection of microcalcifications more than the 
detection of masses. At the same time the results also suggest that any increase in dose level than the clinical levels 
currently used will not influence diagnostic performance. Furthermore, reduction of dose may have an effect on the 



discrimination/classification of lesions. This and the present findings need additional confirmation by rigorous 
clinical trials and human observer studies before clinical implementation.  
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ABSTRACT 
 

The purpose of this study was to, i) use a mathematical observer model to combine information obtained from multiple 
angular projections of the same breast to determine the overall detectability of a simulated lesion in a multi-projection 
breast imaging system and, ii) determine the optimum acquisition parameters of such a system. Multi-projection imaging 
is similar to tomosynthesis, except that the raw projection images are directly analyzed instead of reconstructing those 
images, thereby avoiding reconstruction artifacts. 25 angular projections of each breast from 82 human subjects in our 
tomosynthesis clinical trials were supplemented with projections from a simulated 3 mm 3D lesion. The lesion was 
assumed to be embedded in the compressed breast at a distance of 3 cm from the detector. The contrast of the lesion was 
determined taking into account the energy spectrum of the x-ray beam, properties of the digital detector, scatter fraction, 
and compressed breast thickness. A linear Hotelling observer with Laguerre-Gauss channels (LG CHO) was applied to 
each image. Detectability was analyzed in terms of ROC curves and the area under ROC curves (AUC). Three different 
methods were used to integrate ROCs from multiple (correlated) views to obtain one combined ROC as an overall metric 
of detectability. Specifically, 1) ROCs from different projections were simply averaged; 2) the test statistics from 
different projections were averaged; and 3) a Bayesian decision fusion rule was used. Finally, the number of angular 
projections, angular span and the acquisition dose level were optimized for highest AUC of the combined ROC as a 
parameter to maximize the performance of the system. It was found that the Bayesian decision fusion technique performs 
better than the other two techniques and likely offers the best approximation of the diagnostic process. Furthermore, if 
the total dose level is held constant at 1/25th of the standard dual-view mammographic screening dose, the highest 
detectability performance is observed when considering only two projections spread along an angular span of 11.4o.  
 

INTRODUCTION 
 

Multiple-projection acquisition modalities such as Digital Breast Tomosynthesis (DBT), have been shown in the past to 
perform better than the standard projection procedures.1 In recent implementations of DBT, a plurality of projection 
images are acquired along an arc pivoted about a point above the detector. These projection images are similar to 
standard mammograms, except that each of the images are acquired with lower dose level than in standard 
mammography. The images are then processed by image reconstruction algorithms to generate a multitude of in-plane 
image slices within the breast. Although this technique partially overcomes the limiting factor of overlapping anatomical 
structures, leading to increased conspicuity of lesions as compared to conventional mammograms, it is not without 
limitations. The number of slices generated by the reconstruction algorithm depends on the size of the breast. A 
radiologist may, therefore, need to review as many as 50-80 slices per breast to arrive at the final diagnostic decision as 
opposed to reviewing four views per mammographic exam. Moreover, lesion detection in tomosynthesis is dependent on 
the choice of image reconstruction technique, as well as the specifics of the implementation.2 DBT is also prone to 
reconstruction artifacts. These factors may compromise the confidence or even accuracy of radiologist’s decision. 
An alternative to sorting through multiple slices is to review only the unreconstructed angular projections acquired in the 
process of tomosynthesis. Preliminary work in development of CAD algorithm, which fuses information from 
unreconstructed projection images, has demonstrated promising results.3 An important question, however, concerning 



 

any multi-acquisitions technique such as this and also tomosynthesis, is what should be the acquisition parameters for 
optimum detection of breast lesions.  
 
The key acquisition parameters are the total dose delivered to the patient, the number of angular acquisitions, and the 
total angular span of the acquisitions. Currently, there are no standard protocols for tomosynthesis acquisitions. 
Researchers have used 11 to 21 projections, with angular span varying from 30o to 60o, and the total dose to the patient 
ranging between 0.75-1 times the total two-view standard mammography dose-level.1, 3, 4 Recent work on tomosynthesis 
for detecting lung nodules has suggested an angular span of 3o to be optimal. However, other parameters such as dose 
and number of projections were not investigated.5  
 
One way to investigate optimum operating acquisition parameters is to systematically change each of them w.r.t. each 
other and determine which one of the combinations yields the highest detectability of breast lesions. To assess the 
detectability of lesions, a clinical study involving human observers may be conducted. However, such an approach is 
costly and complex. Another approach is to use mathematical observers that model the diagnostic process. Such 
observers have been used in the past to predict the performance of human observer in clinically realistic tasks.6-10  
 
An observer model was designed to assess the Receiver Operating Characteristic (ROC) curve associated with the 
detectability of a lesion at each angular projection. The ROCs from different projections were then combined using three 
techniques.  
 
The goal of this study was two-fold: i) to compare three different techniques using a mathematical observer model to 
combine information obtained from multiple angular projections of the same breast to determine the overall detection 
performance of a multi-projection imaging system in detectability of a simulated mass, and ii) to determine the optimum 
dose level, the number of angular projections and the total angular range.  
 

MATERIALS AND METHODS 
A. Image Database 

 
The study employed a database of images of the left and right breasts of 82 subjects. Images were acquired about the CC 
or MLO orientation from 25 different but fixed angular positions by a prototype clinical multi-projection system, 
Siemens’ Mammomat NovationDR (Fig. 1). The system used a clinical selenium-based, flat-panel, digital mammography 
detector of array size 2816 x 3584 and with a pixel pitch of 85 μm. The system used a tungsten target, a 50 μm rhodium 
filter, a source to image distance (SID) of 65.32 cm, and had an iso-centric geometric pivoting of the x-ray tube about a 
point located 6 cm above the detector. The projection angles of the 25 images were varied between ±25º angular range 
about the central orientation (CC or MLO) in 2° steps. The tube voltage ranged between 28 and 30 kVp. The total dose 
delivered to the patient from 25 angular acquisitions was equivalent to that delivered in a standard two-view 
mammographic screening procedure, with each angular projection at a dose level, Dθ, equal to 1 25th  of the total dose. 
All images were judged to be free from suspicious lesions. 

 
 
 
 

 
 
 

Fig. 1: The prototype multi-
projection breast imaging 

instrument. 

Using the database, 492 ROIs (2 breasts x 82 
patients x 3 ROIs/projection) of size 512 x 
512 each were extracted.  The displacement of 
the ROIs on the detector across the different 
angular projections was taken into account so 
that the ROIs from the same patient 
represented the same section of the breast. 
From these, 264 were used for training the 
observer model, while the remaining 228 
ROIs were used for testing. 



B. 3D Lesion Simulation 
 

The ROIs generated above were inserted with a simulated mammographic lesion, 3 mm in diameter. The lesion was 
simulated in 3D. To do so, first a target 2D projection profile based on a previously published model of lung nodules,11, 12 
also applied to mammographic applications.13 Starting from this profile, the surface of the central slice of the lesion was 
reconstructed using inverse radon transform, assuming that the lesion is isotropic and the different angular projections 
along the plane of the central slice would yield the same profile across the central slice. The central slice was then rotated 
about its diameter to complete the simulation of a 3D lesion.  
 
Next, projections of this 3D lesion from the 25 angular positions of the tube onto the center of different ROIs were 
computed taking into account the position of the ROI on the detector and assuming that the lesion was embedded in the 
compressed breast (2-8 cm in thickness) at a distance of 3 cm from the detector. The x and y coordinates of the projected 
lesion on the image plane were determined as,  
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where (x, y, z) are the positional coordinates of any point on the lesion, (xi, yi) are the corresponding coordinates in the 
image plane, and L and D are the distances of the pivotal  point from the source and the detector, respectively. These 
equations were derived based on the trajectory of the acquisition system and are similar to those derived by others. 14,15 
Fig. 2 shows projection of the 3-D lesion on the detector from three different tube angular orientations of +21.89o, 0o, and 
–22.94o relative to the CC orientation.  
 
The lesions were embedded onto the different ROIs to generate 492 signal-present ROIs for each angular projection. The 
ratio of the contrast of the lesion to its diameter (set to 3 mm) was determined from published contrast/lesion thickness 
ratios based on the acquisition kVp, target/filteration combination, compressed breast thickness, and detector type.11 This 
ratio was further modified to take scattering into account. Towards that end, scatter to primary ratio were computed 
based on 80/20% glandular tissue/fat breast composition. The lesions were then added to the ROI in the log space such 
that the contrast of the lesion over the background was independent of the breast composition. Fig. 3 shows images of 
ROIs with the simulated lesion embedded at the center.  
 

C. Noise Simulation 
 
Following extraction of ROIs, a noise modification routine was used to add radiographic noise to each of the ROIs to 
create images with a noise appearance similar to that caused by further reduction in radiation dose from Dθ. Noise 
equivalent of a particular dose level was determined using a novel algorithm, which has been reported earlier in detail.16 
The algorithm accounted for the quantum noise variance, the detector transfer properties and its noise characteristics, and 
the impact of varying attenuation due to breast structures. By changing the noise magnitude, 24 dose-reduction levels, 
corresponding to Dθ/2 to Dθ/25, were simulated. These with the original clinically acquired images resulted in images 
with 25 contiguously decreasing dose levels. Fig. 3 shows ROIs with different dose levels. While Fig. 3(a) shows the 
original clinically acquired image, Fig. 3(b), and (c) show the same ROI with added simulated noise corresponding to          

(1)

reduced dose level of Dθ/2, and Dθ/25, respectively.



 

(a) (b) (c) 

Fig. 2: Example images of projections of 3-D model of a 3 mm simulated lesion assumed to be 3 cm above the detector. 
These lesions were embedded on tomographic projections to emulate the lesion-present mammographic background. (a), (b), 
and (c) show the projections with the tube orientation at +21.9o, 0o, and –22.9o, respectively, relative to the CC orientation. 

Fig. 3: Example images of ROIs with simulated lesion embedded at the center. The ROIs were extracted from full-field 
tomographic projections, following which, projections of 3D model of a 3 mm lesion were embedded at the center of each of 

these ROIs. (a) shows ROI of a clinically acquired projection with dose level, Dq, equal to 1/25th that of standard 
mammographic screening. (b), and (c) show the same ROI with noise corresponding to 1/2, and 1/25th fraction of Dq. 

 
 
 
 
 
 
 
 
 
 

 
D. Mathematical Observer Model 

 
Mathematical observer models have been used to predict human observer performance in clinically relevant visual 
tasks such as the detection of lesions in a complex background structure. It has been shown earlier that linear observers 
models like Hotelling observers are good predictors of human visual performance under various tasks over real 
anatomic backgrounds 17-20. A computationally simpler version of Hotelling observer, namely the Laguerre-Gauss 
Channelized Hotelling Observer (LG CHO) was used in this study. LG CHO uses linear features that are a product of 
Laguerre polynomials and Gaussians functions for reducing the dimensionality of the Hotelling observer, thus making 
the implementation simpler. The functions use a distance scale related to the signal radius. This value which defines 
the variance of the Gaussian, is iteratively adjusted to maximize the area under the ROC curves. A value of 10 was 
found to maximize AUC in the present study. A total of 10-channels were used (generally 6 channels are sufficient for 
characterizing isotropic signals 21.  As shown in Fig. 2, the signals (simulated lesions) used in our study were isotropic 
within certain degrees of approximation. The covariance matrix of the LG CHO was trained with signal-absent ROIs. 
While testing using the LG CHO, signal in each of the ROIs was analyzed with the signal-known exactly (SKE) 
methodology, assuming that the lesion embedded on different ROIs within the same angular projection have 
approximately the same shape.  ROCs for each of the 25 angular projections were obtained using a methodology 
reported earlier.6 
 

(c) (b)(a) 



E. ROC Fusion 
 
25 ROCs obtained from the 25 angular projections are indicative of the performance of an observer as it analyzes each of 
those projections independently, i.e. unmindful of the correlation between the projections. The task of the present study 
was to fuse the 25 ROCs into one final index of performance. Towards that end, three methods were used. For the first 
method, the 25 ROCs were simply averaged along the true positive fractions to yield the combined ROC associated with 
the detection of lesion in all the projections. In the second method, the signal-present and signal-absent test statistics 
from different projections were averaged to determine the final test statistics. These values were then used to determine 
the combined ROC.  
 
For the third ROC fusion method, a modification of a recently published Bayesian decision fusion algorithm was used.22 
In this case, first ROC for each angular projection in the training dataset was determined. The training dataset comprised 
of 429 ROIs for each angular projection. Next, for each of the 69 ROIs in the testing dataset, signal-present decision 
variable was calculated by determining the response of the image embedded with ith lesion to ith lesion template and the 
corresponding signal-absent response by determining the response of the image itself (without the lesion embedded) to 
the ith lesion template. Binary observer decision, βi, to the ith image was computed as  
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i.e., the binary decision for an ith image was 1 if the signal-present decision variable, 1
iλ , exceeded signal-absent 

decision variable, 0
iλ , but 0 otherwise. From the above equations it is clear that the threshold for correct observer 

outcome of an ith image is 0
iλ . The corresponding values of probability of true positive, dp , and of false positives, fp , 

were determined from the ROCs of the 25 angular projections in the training dataset. Assuming that the binary decisions 
were statistically independent, the PDFs of the fused decision variables for signal-present and null hypothesis were then 
obtained as    
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where, q is an index for angular projection. Having found the signal-present and signal-absent decision variables, the 
probability density functions of each were computed and ROC determined. 
 

F. Evaluating optimum acquisition parameters 
 

The ROC fusion methodologies were applied to evaluate the effect of changing original acquisition parameters at each of 
the 25 dose levels. The two parameters evaluated were the angular range of projections and the number of angular 
projections within each angular range. Furthermore, two dose conditions were evaluated:  

 

(3)

(2)



(a) the iso-image dose condition in which all the angular projections considered for final figure of merit 
have the same dose levels resulting in increasing total delivered dose with each additional angular projection, e.g., 
evaluating performance from fusing decisions from N acquisitions, each at a dose level of Dθ, resulting in a total 
delivered dose of NDθ, and  

 
(b) the iso-study dose condition in which incorporating additional angular acquisition in the study does 

not result in increased total dose delivered to the patient, i.e. only acquisitions with dose levels of Dθ/N are used 
for analyzing the final performance index from N acquisitions, resulting in a fixed total delivered dose of Dθ. 
Optimum acquisition parameter was determined as the combination of dose level, number of angular projections 
and the angular range which yield the maximum area under the combined ROC.   

 
RESULTS 

 
ROC curves and the corresponding AUCs obtained from the three techniques are shown in Fig. 4. While AUC obtained 
from a single CC projection was 0.652, AUC obtained from an average of ROCs obtained from 25 projections was 
0.642. Simple averaging of test statistics yielded an AUC of 0.815.  An AUC of 0.946 was obtained from the Bayesian 
decision fusion technique.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5 shows variation of AUC under iso-image dose conditions for different number of angular projections spanning a 
total angular arc in the 3.6-44.8o range using the Bayesian decision fusion technique. The dose level of each acquisition 
is equal to 1/25th of standard mammographic screening dose-level leading to increased dose level with increasing number 
of angular projections considered. At each angular range, the AUC increases with the increase in number of angular 

Fig. 4: ROCs of 25 projections and the average of those with the final AUC = 0.6417. Also shown are the 
ROCs obtained from the three other fusion techniques. The angular span of the projections was 44.8o. 
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projections, however, the change in AUC in each case is minimal after 10 projections. Noteworthy, is the fact that an 
angular span of 11.4o yields the highest AUC when fusing only two projections. 
 
Fig. 6 shows variation of AUC under iso-study dose conditions using the Bayesian decision fusion technique. In this 
case, the total dose level is linearly divided amongst the different projections and hence the total dose delivered does not 
increase with an increase in the number of projections considered for decision fusion. For all angular spans, the AUC 
first increases and then decreases as the number of projections are increased. The iso-image and iso-study dose 
conditions for two angular spans – 44.8o and 11.4o, are collated in Fig. 7.  Both figures show that under iso-study dose 
conditions, the highest AUC is obtained by combining information from just two projections with an angular span of 
11.4o.  
 
Fig. 8 shows the variation of AUC obtained by different fusion techniques under iso-study dose conditions. The total 
angular span was held constant at 44.8o 
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Fig. 5: Variation of AUC under iso-image dose conditions for different number of angular projections spanning a total 
angular arc in the 3.6-44.8o range using the Bayesian decision fusion technique. The dose level of each acquisition is equal to 

1/25th of standard mammographic screening dose-level leading to increased dose level with increasing number of angular 
projections considered to reach a maximum of conventional dual-view screening dose at 25 projections. 
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Fig. 6: Variation of AUC under iso-study dose conditions using the Bayesian decision fusion technique. The total dose level, 
equal to 1/25th of standard dual-view mammographic screening dose level, is linearly divided amongst the different 

projections and hence the total dose delivered remains constant at this dose level. 
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dose conditions (at Dθ for the whole study) for two angular spans – 44.8o and 11.4o, using Bayesian decision fusion technique.
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DISCUSSION 
 

The methodology used in this study quantifies the effect of changing acquisition parameters on the image quality in 
terms of detectability of a simulated mass. To the best of our knowledge, such a study has not been undertaken before. 
Each of the three acquisition parameters investigated in this study has a clinical implication. While having multiple 
images of the same breast potentially increases the cues for the detection of pathology, it also adds the dose delivered to 
the patient (iso-image dose condition). Alternatively, total dose may be equally distributed among all the projections as 
the number of projections is increased such that the total dose is held constant (iso-study dose condition). In this case, 
however, as the number of projections is increases, the dose level of each projection decreases, severely compromising 
the image quality due to the reduction of the signal-to-noise-ratio in each projection. This reduction in image quality 
may, however, be offset by added information provided to the observer by increased number of projections. These 
potentially conflicting factors may thus introduce an inflection point in the over all detectability of a mass, as indeed 
shown in Figs. 6 and 8. In this study, we show that it is possible to separate the question of dose delivered to the patient 
from the number of projections needed for an optimal detection task using an iso-study dose condition. Our study 
showed that at a given total dose level, the best performance can be obtained using only two projections.  
 
We found that the detectability is dependent on the total angular span of the projections. The performance is better at 
lower angular spans. This may be because at larger source angles, the x-ray beam has larger path resulting in higher 
attenuation of the beam. In this study, we used three techniques to fuse information from these multiple images of the 
same breast to arrive at one final figure of merit indicating overall detectability of a simulated mass.  Out of the three 
fusion techniques, simple averaging of ROCs or of test statistics do not emulate a clinical decision processes. Using these 
techniques, under iso-study dose conditions, the AUCs either decrease or remain relatively constant with increase in the 
number of projections (Fig. 8). 
  

Fig. 8: Variation of AUC obtained by different fusion techniques under iso-study dose conditions. The total 
angular span was held constant at 44.8o. 
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The third technique, Bayesian decision fusion, may be understood in the following way: given an image from angular 

projection, θ, assuming that the decision for signal present is 1, the probability of correct detection is dpθ . However, if 

the decision is 0, the probability that the signal is still present is the probability of false negative and hence  (1- dpθ ). 

Thus the resultant probability of signal present in the image is dpθ .(1- dpθ ). Assuming statistical independence of 
decisions among angular projections gives the PDFs of the fused decision variables of eq. (3). It may be noted that 
statistical independence of only binary decisions of the 25 classifiers were assumed, however, correlation information 
between contiguous images has not been taken into account. It may be noted that statistical independence of only binary 
decisions of the 25 classifiers were assumed, however, correlation information between contiguous images has not been 
taken into account. However, the Bayesian decision technique closely emulates the decision process used by human 
observers in arriving at the final decision. 
 
One of the limitations of this study was the fact that we could not evaluate performance at arbitrary number of angular 
projections for each angular span. This is because we were limited by the sampling of the original clinical images which 
was uniform within each angular span. This is evident is Figs. 5,6, and 7 where AUC values were plotted for fewer 
angular projections as the angular span decreases. Furthermore, because we could only simulate a reduction of exposure 
levels by adding corresponding noise onto the images, only one iso-study dose condition of total dose of Dθ could be 
investigated (Dθ corresponding to 1/25 of standard two-view mammographic screening dose). Furthermore, although the 
observer models have been shown to correlate well with human detection performance on real anatomical backgrounds, 
like mammograms, an exhaustive study has not yet been carried out to conclusively establish the correlation. Hence it is 
important that the results of the study be clinically validated. For our future work, we plan to extend our study to imaging 
cadaver specimens. 
 
Reducing the number of acquisition images has certain advantages. While it may provide superior image data for a signal 
detection, it can make the process more comfortable for the patient, reduces possible motion artifacts, and reduces the 
total acquisition time. However, the advantages of a reduced number of projections need to be confirmed with the dose 
level for the examination kept at the same level as that of standard screening. That assessment should await further 
studies.  
 

CONCLUSIONS 
 

Mathematical observer models can be used to predict the performance of a multi-projection acquisition system. 
Detectability of lesion was found to be dependent on the number of projections used, the total angular span of those 
projections and their acquisition dose level. An optimization technique to quantify the effects of changing acquisition 
parameters was established. It was found that if the total dose level is held constant at 1/25th of the standard dual-view 
mammographic screening dose, the highest detectability performance is observed when considering only two projections 
spread along an angular arc of span 11.4o. Future work will confirm this optimization at higher dose levels. The 
methodology presented here for optimizing acquisition parameter are generic in nature and, therefore, can be easily 
adopted for optimizing the acquisition parameters for other breast imaging methods, such as Digital Breast 
Tomosynthesis, where the final figure of merit is contingent on decisions made on a plurality of image slices. 
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